Novel non-lipid anti-atherosclerotic Therapies

Todd Anderson
Libin Cardiovascular Institute
University of Calgary
Disclosures

- Department of Cardiac Sciences and Libin Cardiovascular Institute – U of Calgary

- Grant support by Alberta Innovates – HS
 – Merck, Amgen
Objectives

• Understand new insights into pathophysiology of atherosclerosis and plaque instability
• Review approaches to target identification
 – Genetics
 – Molecular Imaging
 – miRNA
• Targets
 – Anti-inflammatory therapies
 – Others
Nitric oxide signaling

Murad NEJM 2006;355:2003
Secondary messenger cell signaling

Calo et al. J Hypert 2007;25:259
Pathophysiology

Libby et al.
Nature 2011;473:317
Objectives

• Understand new insights into pathophysiology of atherosclerosis and plaque instability

• **Review approaches to target identification**
 – Genetics
 – Molecular Imaging
 – miRNA

• **Targets**
 – Anti-inflammatory therapies
 – Others
Potential CV Biomarkers

Imaging
- Angiography
- IVUS
- Virtual Histology
- Palpography
- Coronary CT angio
- Carotid US – IMT, plaque
- MRI
- PET
- Aortic CT
- Scintigraphy (thallium, sestimibe)
- Intracoronary Ach
- Brachial ultrasound – FMD
- Brachial hyperemic velocity
- Plethysmography
- TEE (aortic)
- Monoclonal antibody imaging
- Pulsatile flow visualization (aorta)
- Regional aortic distensibility
- Aortic stiffness (Doppler)
- Coronary thermography
- Coronary elastography
- Coronary NIR spectroscopy

Immunology
- Anti-oxLDL IgG

Genetics
- ACE polymorphism
- PCSK9
- 9p21
- rs 20455 in K1F6

Lipids
- lipoproteins
- lipoprotein subfractions (L1-3, V1-6, H1-5)
- Apolipoproteins (CIII, All:E, LpB…)
- Lp(a)
- Lipid ratios

Immunoglobulins
- IgG, IgM, IgA

Inflammation and Proliferation
- CRP
- Lp-PLA2
- MCSF
- PDGF
- FDF
- FGF
- Interleukins (1,6,8,10,12,15)
- MMPs (1,2,3,9)
- Heat shock proteins - 27
- TNF alpha
- Proliferating cell nuclear antigen
- Hyaluronan receptors
- SR-A, SR-B1
- TGF
- SM myacin heavy chains
- CD 11, 18, 36, 40, 68
- MCP-1
- CCR2
- Pentraxin-3
- C4b binding protein
- I kappa B-alpha
- Total sialic acid
- Osteopontin

Coagulation
- VWF
- tPA
- PAI-1
- PF4
- D-dimer
- Tissue factor
- Fibrinogen
- Beta thromboglobulin
- Erythrocyte sed. Rate
- RBC adhesiveness/aggregation

Adapted from T Heinonen
Genetic basis of atherosclerosis

• Genome
 – 9p21 - ? Cyclin dependent kinase inhibitors
 – PCSK9 – genotype and protein levels
 – GWAS – CXCL12 (chemoattractant cytokine)
 – Cancer genes such as BRCA1

• Transcriptome
 – Myeloid related protein (MRP 14) found in platelets

• Proteome
 – CRP, PLA2, MPO
 – ? Of the hundreds with association with athero

• Metabolome
Genetic basis of atherosclerosis

- 100 genes have been shown to affect atherosclerosis in mice models
- About 1/3 work through lipids, 2/3 of KO decrease atherosclerosis
- Tend to use LDLr or apoE KO mice
- Human studies use GWAS or candidate gene approach
- Linkage studies and mendelian randomization
microRNA and atherosclerosis

• Highly conserved non-coding RNA
• Development and disease
• Post-transcriptional modulators of gene regulation
• Dysregulation results in cellular abnormalities including calcification, hypertrophy, remodeling etc.
• Inhibitors are being developed
microRNA and atherosclerosis

Small et al. Nature 2011;469:336
Molecular imaging of atherosclerosis

Molecular imaging of atherosclerosis

<table>
<thead>
<tr>
<th>Molecular Target</th>
<th>Imaging Moieties</th>
<th>Imaging Platforms</th>
<th>Biological Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCAM-1</td>
<td>123I, 99mTc, 18F, SPIO, NIRF, microbubbles</td>
<td>PET/SPECT, MRI, optical imaging, CEU</td>
<td>Inflammation</td>
</tr>
<tr>
<td>ICAM-1</td>
<td>Gd, microbubbles</td>
<td>MRI, CEU</td>
<td>Inflammation</td>
</tr>
<tr>
<td>E-selectin</td>
<td>SPIO</td>
<td>MRI</td>
<td>Inflammation</td>
</tr>
<tr>
<td>P-selectin</td>
<td>SPIO, Gd, microbubbles</td>
<td>MRI, CEU</td>
<td>Inflammation, thrombosis</td>
</tr>
<tr>
<td>...</td>
<td>SPIO</td>
<td>MRI</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>64Cu, 18F-SPIO</td>
<td>PET/SPECT</td>
<td>Phagocytic activity</td>
</tr>
<tr>
<td>FDG</td>
<td>18F</td>
<td>PET</td>
<td>Metabolic activity</td>
</tr>
<tr>
<td>FCH</td>
<td>18F</td>
<td>PET</td>
<td>Metabolic activity</td>
</tr>
<tr>
<td>HDL/LDL</td>
<td>123I, 125I, 131I, 111In, 99mTc, Gd</td>
<td>PET/SPECT, MRI</td>
<td>Lipid uptake</td>
</tr>
<tr>
<td>CD68</td>
<td>124I</td>
<td>PET/SPECT</td>
<td>Lipid uptake</td>
</tr>
<tr>
<td>LOX-1</td>
<td>111In, 99mTc, Gd</td>
<td>SPECT, MRI</td>
<td>Lipid uptake</td>
</tr>
<tr>
<td>SRs</td>
<td>Microbubbles</td>
<td>CEU</td>
<td>Lipid uptake</td>
</tr>
<tr>
<td>Oxidized epitopes</td>
<td>125I, Gd, SPIO</td>
<td>PET/SPECT, MRI</td>
<td>Oxidative stress</td>
</tr>
<tr>
<td>MPO</td>
<td>Gd</td>
<td>MRI</td>
<td>Oxidative stress</td>
</tr>
<tr>
<td>Phosphatidylserine</td>
<td>123I, 124I, 99mTc, Gd, SPIO</td>
<td>PET/SPECT, MRI</td>
<td>Cell death</td>
</tr>
<tr>
<td>MMPs</td>
<td>123I, 99mTc, 18F, Gd, SPIO, NIRF</td>
<td>PET/SPECT, MRI, optical imaging</td>
<td>Proteinase activity</td>
</tr>
<tr>
<td>Cathepsins</td>
<td>NIRF</td>
<td>Optical Imaging</td>
<td>Proteinase activity</td>
</tr>
<tr>
<td>Collagen</td>
<td>Gd, NIRF</td>
<td>MRI, optical imaging</td>
<td>Proteinase activity</td>
</tr>
<tr>
<td>$\alpha\nu\beta3$ integrin</td>
<td>18F, Gd, NIRF, microbubbles</td>
<td>PET, MRI, optical imaging, CEU</td>
<td>Neoangiogenesis</td>
</tr>
<tr>
<td>Ca^{2+} hydroxyapatite</td>
<td>18F, NIRF</td>
<td>PET, optical imaging</td>
<td>Osteogenesis</td>
</tr>
<tr>
<td>Glycoprotein IIb/IIIa</td>
<td>99mTc, SPIO, NIRF, microbubbles</td>
<td>PET, MRI, optical imaging, CEU</td>
<td>Thrombosis</td>
</tr>
<tr>
<td>Fibrin</td>
<td>64Cu, Gd</td>
<td>PET, MRI</td>
<td>Thrombosis</td>
</tr>
<tr>
<td>Factor XIII</td>
<td>Gd, SPIO, NIRF</td>
<td>MRI, optical imaging</td>
<td>Thrombosis</td>
</tr>
</tbody>
</table>

Atherosclerosis

Anti-inflammatory targets
Anti-inflammatory targets – inflammasome

Nod like receptor
Anti-inflammatory targets – IL1B

- Mouse studies have demonstrated the role of the inflammasome in atherosclerosis development
- Human biomarker studies have shown association
- Genetic validation not firmly established
- Clinical studies have demonstrated benefit in other inflammatory diseases
- Ongoing randomized trials in human atherosclerosis
Anti-inflammatory targets

• Cardiovascular Inflammation Reduction Trial
 – Stable post-MI patients
 – High dose statins
 – Randomized to Mtx (10-15 mg/week) or placebo

• Canakinumab Anti-inflammatory Thrombosis Outcomes Trial
 – IL1-beta inhibition in stable CAD patients
 – Cholesterol crystals stimulate the NLRP3 inflammasome that stimulates IL1-beta
Lp-PLA2 and atherosclerosis

Stable Plaque
- Low Lp-PLA2 content (reddish-brown staining)
- May have significant stenosis
- Thick fibrous cap / high collagen content
- Small lipid pool
- Few inflammatory cells

Ruptured Plaque
- High Lp-PLA2 content (reddish-brown staining)
- May have minimal stenosis
- Thin fibrous cap / low collagen content
- Large lipid pool
- Many inflammatory cells

Corson et al AJC 2008;101:41F
Inflammation - Leukotrienes

Inflammation - Resveratrol

Li et al. Nitric Oxide 2012;26:102
Anti-inflammatory targets

- Translating the extension data set from mice has proven difficult
- NSAIDs – increase risk
- Statins – have anti-inflammatory properties
- Inflammasome – IL1B antagonists or IL1ra agonists
- Lp PLA\textsubscript{2} antagonists – Darapladib – STABILITY and SOLID TIMI 52
- Methotrexate CIRT study
- Lipoxygenase pathway inhibitors
- Resveratrol
Anti-atherosclerotic targets

• Vitamin D
• Incretin based diabetes therapy
• Lipid targets
• S100A1
• Heat shock proteins – HSP 27
• Thyroidmimetics
Summary

- Can think of risk at the plaque, artery or patient level
- Current therapy aimed at lipid targets and have been successful but still 60% of the risk remains
- Novel therapies offer opportunity over the next decade but the bar is very high to show benefit
- Personalized medicine approach remains a desired goal for the future